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Introduction

Legged locomotion involves various gaits. It has been
observed that fast running animals (cockroaches) employ a
tripod gait (three legs lifted off the ground simultaneously)
while slow walking animals (stick insects) use tetrapod gaits
(two legs lifted off the ground simultaneously). In this work,
we study the effect of stepping frequency on gait transition
from tetrapod to tripod in a bursting neuron model.

CPG bursting neuron model

The system of equations for a bursting neuron model is [1]:

Cv̇ = −{ICa + IK + IKS + IL} + Iext

ṁ =
ε

τm(v)
[m∞(v)−m]

ẇ =
δ

τw(v)
[w∞(v)− w ]

ṡ =
1
τs

[s∞(v)(1− s)− s] (synapse)

The currents take the forms

ICa(v) = ḡCan∞(v)(v − ECa)

IK (v ,m) = ḡK m (v − EK )

IKS(v ,w) = ḡKCaw (v − EK )

IL(v) = ḡL(v − EL)

Iext = constant

The time scales take the forms

τm(v) = sech(kK (v − vK ))

τw(v) = sech(kC(v − vC))

τs = constant
δ � ε� 1/C

The steady state gating variables are

m∞(v) =
1

1 + e−2kK (v−vK )

w∞(v) =
1

1 + e−2kC(v−vC)

n∞(v) =
1

1 + e−2kCa(v−vCa)

s∞(v) =
a

1 + e−2ks(v−Epre
s )

The effect of δ on frequency, duty cycle, swing & stance

I T= the period of a cycle

I frequency = 1/T

I swing = the period of a burst

I stance = T - swing

I duty cycle = swing /T

As δ increases from 0.01 to 0.04, the frequency increases by decreasing
the stance and swing phases. Increasing Iext has a similar effect on
frequency, swing & stance phases, and the duty cycle. So both δ and Iext
can be considered as speed parameters. Here, we only study the effect
of δ on gait transition [2].

Weakly interconnected neurons

For a network of six mutually inhibiting units, assume [3]:
I inhibitory coupling is achieved via synapses that produce

negative postsynaptic currents
I contralateral symmetry
I include only nearest neighbor coupling (three

contralateral coupling strengths c1, c2, c3 and four
ipsilateral coupling strengths c4, c5, c6, and c7)
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The synapse variable s enters the postsynaptic cell:

Cv̇ = −{ICa + IK + IKS + IL} + Iext + Isyn

where

Isyn = Isyn(v , s) = −ḡsyns(v − Epost
s ), ḡsyn : synaptic strength

The following figures show 3 different solutions of 24 equations (which
describe 6 connected legs) with 3 arbitrary initial conditions and a fixed set
of parameters, except for δ. The first two rows depict left & right tetrapod
gaits, respectively, for low speed, δ = 0.01, and the last row depicts a tripod
gait for high speed, δ = 0.04. In these simulations, c1 = c2 = c3, and
c5 = c4 + c7 = c6.
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Phase equations for six weakly coupled neurons

Phase reduction theory yields a single equation for each bursting
neuron. The coupling function is computed by convolving the
phase response curve (PRC) with the synaptic current (Isyn).

φ̇1 = c1H(φ4 − φ1, δ) + c5H(φ2 − φ1, δ)

φ̇2 = c2H(φ5 − φ2, δ) + c4H(φ1 − φ2, δ) + c7H(φ3 − φ2, δ)

φ̇3 = c3H(φ6 − φ3, δ) + c6H(φ2 − φ3, δ)

φ̇4 = c1H(φ1 − φ4, δ) + c5H(φ5 − φ4, δ)

φ̇5 = c2H(φ2 − φ5, δ) + c4H(φ4 − φ5, δ) + c7H(φ6 − φ5, δ)

φ̇6 = c3H(φ3 − φ6, δ) + c6H(φ5 − φ6, δ)

Contralateral symmetry and phase difference of front-middle and hind-middle gives:

θ̇1 = (c1 − c2)H(0.5, δ) + c5H(−θ1, δ)− c4H(θ1, δ)− c7H(θ2, δ)

θ̇2 = (c3 − c2)H(0.5, δ) + c6H(−θ2, δ)− c4H(θ1, δ)− c7H(θ2, δ)
(1)

Assuming H(0.5, δ) 6= 0, (0.5,0.5) is a fixed point of Equation (1) if

c1 + c5 = c2 + c4 + c7 = c3 + c6. balance equation

Also, (0,0) is a fixed point if c1 = c2 = c3. Letting α := c4
c4+c7

(0 < α < 1), and making a change of
time scale, Equation (1) becomes

θ̇1 = H(−θ1, δ)− αH(θ1, δ)− (1− α)H(θ2, δ)

θ̇2 = H(−θ2, δ)− αH(θ1, δ)− (1− α)H(θ2, δ)
(2)

Phase planes of Equation (2) & bifurcation diagram

We can show that when δ increases, a gait transition from tetrapod to tripod occurs.
We first study the phase plane and bifurcation diagram of Equation (2) for α = 0.5 (the figures
below) and then we generalize the result to any α, 0 < α < 1.

(Left) δ = 0.01, 2 stable tetrapod (the letter R (L) corresponds to the right (left) tetrapod gait), 1
stable “slow” tripod (green dots), 1 unstable tripod (corresponding to point (0.5,0.5)), 1 unstable
node (corresponding to point (0,0)) (red dots), and 5 saddle points (orange dots) are observed.
(Middle) As δ increases, a degenerate bifurcation occurs at approximately δ∗ = 0.022. Two tetrapod,
one slow tripod, one unstable tripod, and three saddle points disappear and one stable tripod
bifurcates. (Right) δ = 0.04, 1 stable tripod, 1 unstable node, and 2 saddle points are observed.

Generalization to α 6= 0.5. Calculations show that when α 6= 0.5, the phase planes of Equation (2)
are qualitatively similar to those when α = 0.5, except when δ is very close to the bifurcation value.
For δ is very close to the bifurcation value, one of the stable tetrapod gaits loses its stability (and
the saddle point near the tetrapod gait becomes a stable node, i.e., a transcritical bifurcation
occurs) while the other tetrapod gait remains stable.

Conclusion

We conclude that for any 0 < α < 1, when δ < δ∗ (bifurcation value), there exists at least one stable
tetrapod gait and when δ > δ∗, there exists a unique stable tripod gait.
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